来源:银行家 作者:陈莎 蒋莉莉 发布时间:2012年08月14日
中国农村金融地理排斥的省内差异—基于“地理金融密度不平等系数”衡量指标
“金融排斥”是农村金融领域的一个常用概念,指的是一部分人由于各种原因被排斥在金融机构服务之外,无法获得如存款、贷款这样的基本金融服务。“金融排斥”通常分为六个维度:地理排斥、价格排斥、条件排斥、营销排斥、评估排斥和自我排斥。其中,地理排斥指的是金融机构的地理可及性问题,一些偏远落后地区设置的金融机构网点很少,人们到达金融机构网点十分不便。在中国农村地区,地理排斥仍然占有最基础性的地位。
在衡量地理排斥时,金融机构网点数量是最常用的指标。不少学者已经利用金融机构网点数量对各省的金融排斥情况进行了对比研究,这些研究的主要方法是选择省级层面的数据进行省市、地区对比,却没有考虑省内差异,而较高的省级平均水平却掩盖了省市内部农村地区金融排斥的严重程度。如图1所示,四川省的金融机构网点分布呈现明显的“东多西少”特征。2010年,在四川省的西部,各县金融机构网点数量均在48个以下,这部分地区在地理面积上约占四川省总面积的2/3。而四川省东部各县的网点数量较多。2010年,四川省盐源县仅有6个网点,而成都市金牛区则有287个营业网点,是盐源县网点数量的47.8倍。
因此,在对地理排斥地区差异的研究中,省内差异可以说是不可或缺的一部分内容。然而,由于全国省市数量众多,在度量省内差异时不可能按照每个省的情况分别进行省内的对比分析,因此,以往的研究方法均失效了。但有一个思路可以为我们展示省内差异:当我们知道了各省地理排斥的一般情况时,只要我们知道了省内农村地区银行网点布局的不平等程度,就能对省内差异有较好的理解。
要度量“各省地理排斥的一般情况”,笔者在《中国农村金融地理排斥的地区差异》一文(见本刊2012年第7期第106页)中构建了四个“金融密度”指标,其基本含义、计算方法及适用性如表1所示。
此处的计算是以各县为基本计算单位,当要计算省的“金融密度”时,本文提出的方法是:计算出各县的四个“金融密度”后,以该省的中位数来代表该省的四个“金融密度”。同样的,在计算各地区和全国的四个“金融密度”时,也采用中位数方法。
四个“金融密度”在衡量各省农村金融地理排斥时具有不同的含义和代表性。中国广大的农村地区人口分散,因此,地理金融密度最符合中国农村地区的实际情况。地理金融密度也最符合地理排斥的内涵——地理可及性问题,即在同样的地理面积内,金融机构网点数量越多,人们就越能方便地选择离自己较近的网点获得金融服务。因此,本文最终选择“地理金融密度”作为衡量各省农村地区地理排斥程度的指标,并在此基础上仿照基尼系数的方法构建“地理金融密度不平等系数”这一指标,用以衡量各省农村地区银行网点分布的不平等性,以此度量各省农村金融地理排斥的省内差异,这样的研究在国内中还是首次。
测量指标:地理金融密度不平等系数
为了能够度量省内农村地区的地理排斥程度差异,本文参照基尼系数的计算方法构建了用于衡量省内、地区内部金融排斥差异程度的指标——地理金融密度不平等系数。
基尼系数的计算方法如图2所示。将人口按照收入水平从低到高进行排序后,横轴表示的是人口的百分比,纵轴表示对应的人口拥有的收入所占的百分比。由此绘制出的代表各百分比人群拥有的收入占比曲线即为洛伦兹曲线。图中的对角线为完全平等线,表示的是人口的百分比与收入的百分比完全相等的情况。假设完全平等线与洛伦兹曲线之间的面积为A,洛伦兹曲线以下的面积为B。则基尼系数=A/(A+B)。
当以地理金融密度为指标衡量各省农村地区的金融排斥程度时,如果省内各个县之间的地理金融密度完全平等,则意味着全省每平方公里拥有的网点数量相等。换句话说,就是各县地理面积占比与各县拥有的金融机构网点数量占比是相等的。由此,本文仿照着基尼系数的定义也构造了一个“地理金融密度不平等系数”(见图3)——用各县的地理面积代替基尼系数中的人口数,用各县的金融机构网点数量代替基尼系数中的收入。只不过,本文的分析单位不是个人,而是以县为基本的计算单位。其计算方法与基尼系数一致,都是用A/(A+B)而得到。
专题推荐
为加强对网络借贷信息中介机构业务活动的监督管理,促进网络借贷行业健康发展,依据《中华人民共和国民法通则》、《中华人民共和国公司法》、《中华人民共和国合同法》等法律法规,中国银监会、工业…[详情]